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Abstract. The traditional numerical analysis considers optimization algorithms which guarantee
some accuracy for all functions to be optimized. This includes the exact algorithms. Limiting the
maximal error requires a computational effort that in many cases increases exponentially with the
size of the problem (Horst and Pardalos, 1995, Handbook of Global Optimization, Kluwer). That
limits practical applications of the worst case analysis. An alternative is the average case analysis
where the average error is made as small as possible (Calvin and Glynn, 1997, J. Appl. Prob., 32:
157). The average is taken over a set of functions to be optimized. The average case analysis is
called the Bayesian Approach (BA) (Diaconis, 1988, Statistical Decision Theory and Related
Topics, Springer; Mockus and Mockus, 1987, Theory of Optimal Decisions, Nauk, Lithuania).
Application of BA to optimization of heuristics is called the Bayesian Heuristic Approach (BHA)
(Mockus, 2000, A Set of Examples of Global and Discrete Optimization, Kluwer). In this paper a
short presentation of the basic ideas of BHA (described in detail in Mockus (1989), Bayesian
Approach to Global Optimization, Kluwer and Mockus (2000), A Set of Examples of Global and
Discrete Optimization, Kluwer) is given using the knapsack problem as an example. The
application potential is illustrated by the school scheduling example. In addition the new heuristic
algorithm for solving a bimatrix game problem is investigated. The results ae applied while
solving real life optimization problems and also as examples for distance graduate level studies of
the theory of games and markets in the Internet environment.

1. Direct Bayesian approach (DBA)

There are several ways of applying the BA in optimization. The Direct Bayesian
Approach (DBA) is defined by fixing a prior distribution P on a set of functions f(x)
and by minimizing the Bayesian risk function R(x) (DeGroot, 1970; Mockus, 1989).
The risk function describes the average deviation from the global minimum. The

mdistribution P is regarded as a stochastic model of f(x), x [ R where f(x) might be a
deterministic or a stochastic function. This is very important feature of the Bayesian
approach that shows the equivalence between uncertain deterministic and the
corresponding stochastic functions (Savage, 1954; Lindley, 1965; DeGroot, 1970;
Fine, 1983; Zilinskas, 1986). For example, if only the values z 5 f(x ), i 5 1, . . . , ni i

are known, the level of uncertainty of some deterministic function f(x), x ± x can bei

represented as the conditional standard deviation s (x) of the correspondingn

stochastic function f(x) 5 f(x, v) where v is a stochastic variable.
In the Gaussian case (Mockus, 1989), assuming that the (n 1 1)th observation is

the last one
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1`
2] 21 / 2( y2m (x) / s (x))n nŒR(x) 5 1/( 2ps (x)) E min(c , z) e dz , (1)n n

2`

Here c 5 min z 2 e, z 5 f(x), m (x) is the conditional expectation at the point xn i i n

given the values of z , x i 5 1, . . . , n and e . 0 is a correction parameter. Thisi i

parameter is introduced to improve ‘one-step-ahead’ approximation (1) of the
multi-stage decision process. Therefore, it would be reasonable to define e as an
decreasing function of iteration number. The convergence depends on e, too (2).

The Wiener process is the simplest stochastic model applying the DBA in the
one-dimensional case m 5 1 (Kushner, 1964; Saltenis, 1971; Torn and Zilinskas,
1989). The Wiener model (see Figure 1) implies that almost all the sample functions
f(x) are continuous, that increments f(x ) 2 f(x ) and f(x ) 2 f(x ), x , x , x , x4 3 2 1 1 2 3 4

are stochastically independent, and that f(x) is Gaussian (0, sx) at any fixed x . 0.
Note that the Wiener process originally provided a mathematical model of a particle
in Brownian motion.

The Wiener model is extended to multi-dimensional case, too (Mockus, 1989).
However, simple approximate stochastic models are preferable if m . 1. The simple
models are designed by replacing the traditional Kolmogorov consistency con-
ditions. These conditions require the inversion of matrices of nth order for

2computing the conditional expectation m (x) and variance s (x) . The favorablen n

exceptions are the Markov processes including the Wiener one. Extending the
Wiener process to m . 1 the Markovian property disappears.

Replacing the regular consistency conditions by:

– continuity of the risk function R(x)
– convergence of x to the global minimumn

– simplicity of expressions of m (x) and s (x)n n

Figure 1. Wiener model.
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the following simple expression of R(x) is obtained using the results of Mockus
(1989).

2ix 2 x ii
]]]R(x) 5 min z 2 min .i z 2 c1<i<n 1<i<n i n

The aim of DBA (designed mainly for continuous cases) is to provide as small
average error as possible. In addition, DBA has some good asymptotic properties,
too. It is shown (Mockus, 1989) that

1 / 2f 2 f * 1 eaS]]]]Dd*/d 5 , n → ` (2)a e

where d* is density of x around the global optimum, d is average density of x , f *i a i

is the optimal value of f(x), f is its average value, and e is the correction parameter.a

That means that DBA provide convergence to the global minimum for any
continuous f(x) and greater density of observations x around the global optimum ifi

n is large and e is small.
Note that the correction parameter e has a similar influence as the temperature in

simulated annealing. However, that is a superficial similarity since, using DBA the
good asymptotic behavior should be regarded just as an interesting ‘by-product’.
The reason is that Bayesian decisions are for the small size samples where
asymptotic properties are not noticeable.

Choosing the optimal point x for the next iteration by DBA one solves an11

complicated auxiliary optimization problem minimizing the expected deviation R(x)
from the global optimum (see Figure 1). That makes the DBA useful mainly for the
computationally expensive functions of a few (m , 20) continuous variables.

If the number of variables is large and the objective function is not expensive the
Bayesian Heuristic Approach (BHA) is preferable. That is the case in many discrete
optimization problems. As usual these problems are solved using heuristics based on
an expert opinion.

2. Bayesian Heuristic Approach (BHA)

The Bayesian Heuristic Approach (BHA) means fixing a prior distribution P on a set
of auxiliary functions f (x) defining the best values obtained using K times someK

heuristic h(x). The aim of the heuristic h(x) is to optimize an original function v( y)
nof variables y [ R (Mockus et al., 1997). As usual the components of y are discrete

variables. The heuristic h(x) defines an expert opinion about the decision priorities.
It is assumed that the heuristics or their ‘mixture’ depend on some continuous

mparameters x [ R , where m , n.
In BHA the expert knowledge is involved by defining the heuristics. Here the

Bayesian decision theory is exploited just to optimize parameters of the heuristics by
DBA.
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Heuristics often involve randomization procedures depending on some empirical-
ly defined parameters. The examples of such parameters are the initial temperature,
if the simulated annealing is applied, or the probabilities of different randomization
algorithms, if their mixture is used. In these problems, the DBA is a convenient tool
for optimization of the continuous parameters of various heuristic techniques. That
is called the Bayesian Heuristic Approach (BHA) (Mockus et al., 1997).

3. Knapsack example

The example of knapsack problem illustrates the basic principles of BHA in discrete
optimization. Given a set of objects j 5 1, . . . , n with values c and weights g , findj j

the most valuable collection of limited weight
n n

max v( y), v( y) 5 O c y , O g y < g .j j j jy
j51 j51

Here the objective function v( y) depends on n Boolean variables y 5 ( y , . . . , y ),1 n

where y 5 1 of object j is in the collection, and y 5 0 otherwise.j j

3.1. GREEDY HEURISTICS

Greedy heuristics build a system from scratch. The well known greedy heuristic
h 5 c /g is the specific value of object j. The greedy heuristic algorithms: ‘take thej j j

greatest feasible h ’, is very fast but it may get stuck in some non-optimal decision.j

One removes the heuristic algorithm out of such non-optimal decisions by taking
decision j with probability r 5 r (h ) where r (h ) is an increasing functions of hj x j x j j

and x 5 (x , . . . , x ) is a parameter vector. The DBA is used to optimize the1 m

parameters x by minimizing the best result f (x) obtained applying K times theK

randomized heuristic algorithm r (h ). That is the most expensive operation of BHA.x j

Therefore, the parallel computations of f (x) are used, if possible. That reduces theK

computing time in proportion to a number of parallel processors.
Optimization of x adapts the heuristic algorithm r (h ) to a given problem. Let usx j

l lillustrate the parameterization of r (h ) by three randomization functions: r 5 h /x j i i
lo h , l 5 0, 1, `. Here the upper index l 5 0 denotes the Monte Carlo componentj j

(randomization by the uniform distribution). The index l 5 1 defines the linear
component of randomization. The index ` denotes the pure heuristics with no

` `randomization: r 5 1 if h 5 max h , and r 5 0, otherwise. Here parametersi i j j i

x 5 (x , x , x ) define the probabilities of using randomizations l 5 0, 1, ` corre-0 1 `

spondingly. The optimal x may be applied solving different but related problems,
too (Mockus et al., 1997). That is important in the ‘on-line’ optimization.

3.2. PERMUTATION HEURISTICS

Permutation heuristics improve some initial expert decision by making permutations.
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Here the expert knowledge is involved in the initial decision. Applying BHA,
0different permutations of some feasible solution y are tested. Heuristics are defined

i 0 ias the difference h 5 v( y ) 2 v( y ) between the permuted solution y and thei
0original one y .

The well known simulated annealing algorithm illustrates the parameterization of
r (h ) depending on a single parameter x. The probability of accepting worsex j

2h / xisolutions is e , where x is the ‘annealing temperature’.

4. School scheduling

Another example is scheduling of traditional schools where curriculum is defined by
school authorities with no choice for students. Here a good initial schedules are
available, as usual, thus the permutation heuristics is the natural search algorithm.

The sequence of teaching subjects, regarded as tools, can be changed. Different
classes are considered as different tasks. The classrooms, including the computer
and physics rooms and studies, are the limited resources. The objective is the
number of ‘empty’ hours, so called ‘teacher windows’ when a teacher waits for the
next scheduled lecture. One searches for such schedules that reduce the sum of
teacher windows.

There are five constraints: no ‘student windows’, a teacher can deliver only one
lesson at a time, a student can attend only one lesson ar a time, no ‘double’ lectures

1(the sequence of two lectures of the same subject), not more than 7 h per day. The
optimization starts from the existing school schedule.

The search for better schedules follows a general pattern of permutation
algorithms related to the Bayesian Heuristic Approach (Mockus et al., 1997): select
a teacher i with probability x and perform a feasible permutation by exchanging the

2window class with the convenient one. The GMJ systems described in (Mockus,
2000) are used for optimization of the selection probability x.

The algorithm is very simple and natural. It mimics, in a sense, the usual ways to
improve existing schedules. However, the algorithm does not satisfy the conver-
gence conditions (Mockus et al., 1997). Therefore, a penalty function approach is
used for profile school scheduling where students of eleventh and twelfth grades are
choosing just 16 from 64 available subjects. A completed school scheduling models
are in web-sites. Users data files can be uploaded by browser.

5. Improving expert heuristics

The main objective of BHA is improving any given heuristic by defining the best
parameters and/or the best ‘mixtures’ of different heuristics. The heuristic decision

1 There are some exceptions.
2 A window class is the class in the teacher window.
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rules mixed and adapted by BHA often outperform (in terms of speed) even the best
individual heuristics as judged by the considered examples. In addition, BHA
provides almost sure convergence. However, the final results of BHA depend on the
quality of the specific heuristics including the expert knowledge. That means, the
BHA should be regarded as a tool for enhancing the heuristics but not for replacing
them.

Many well known optimization algorithms, such as Genetic Algorithms (Gol-
dberg, 1989), GRASP (Mavridou et al., 1998), and Tabu Search (Glover, 1994),
may be regarded as generalized heuristics that can be improved using BHA.

Genetic Algorithms (Goldberg, 1989) is an important ‘source’ of interesting and
useful stochastic search heuristics. It is well known that the results of the genetic
algorithms depend on the mutation and cross-over parameters. The Bayesian
Heuristic Approach could be used in the optimizing those parameters.

In the GRASP system (Mavridou et al., 1998) the heuristic is repeated many
times. During each iteration a greedy randomized solution is constructed and the
neighborhood around that solution is searched for a local optimum. The ‘greedy’
component constructs a solution, one element at a time until a solution is
constructed. A possible application of the BHA in GRASP is in optimizing a
random selection of a candidate to be in the solution because different random
selection rules could be used and their best parameters should be defined. BHA
might be useful as a local component, too, by randomizing the local decisions and
optimizing the corresponding parameters.

In tabu search the issues of identifying best combinations of short and long term
memory and best balances of intensification and diversification strategies may be
obtained using BHA.

Hence, the Bayesian Heuristics Approach may be considered when applying
almost any stochastic or heuristic algorithm of discrete optimization. The proven
convergence of a discrete search method (Andradottir, 1996) is an asset. Otherwise,
the convergence conditions are provided tuning the BHA (Mockus et al., 1997). A
large collection of examples for comparison of different methods of global and
discrete optimization are in (Floudas et al., 1999).

An important source of heuristics are approximate algorithms developed by
mathematical means. For example, the Gupta heuristic was the best one while
applying BHA to the flow-shop problem (Mockus et al., 1997). To illustrate the
point, a new heuristic algorithm for solving a bimatrix game called the ‘Inspector
Problem’ will be considered.

6. Inspector problem

The free market competition defining equilibrium prices and qualities (Nash, 1950;
Mockus, 2000) represents only a part of economical and social activities. Another
part is the inspection that one needs to provide tax collection, health and
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environment protection, etc. We consider a simple model that illustrates the
competitions between inspector and violator.

6.1. BIMATRIX GAME

Denote by x 5 (x , . . . , x ), x > 0, o x 5 1 the inspection vector and by y 51 m i i i

( y , . . . , y ), y > 0, o y 5 1 the violation vector. Here x denotes the inspection1 m j j j i

probability of the area i. y means the violation probability in the area j. Denote byj

u(i, j) the inspection utility function when the object i is inspected and the object j
is violated. Denote by v(i, j) the violation utility function when the object i is
inspected and the object j is violated. Functions U(x, y) and V(x, y) denote expected
values of the inspection and violation utility functions using inspection and violation
vectors x, y. These vectors define probabilities of inspection and violation. For
example,

p g q , if i 5 ji i iu(i, j) 5 (3)H0 , otherwise ,

and

2 q p g 1 (1 2 p )q g , if i 5 jj i j i j jv(i, j) 5 (4)Hq g , otherwise .j j

Here p is the probability of detecting the violation, if it happens in the area i. q isi i
3the probability of completing the violation, if violation occurs in the area i. g is thei

utility of the completed violation in the area i.
4Expression (3) means that if the violation is completed and detected then the

5inspector premium is equal to the utility of violation. Expression (4) shows that if
the violation is completed and detected, the violator utility is negative. The utility is
positive, if it is completed and not detected.

The average utility functions at fixed inspection and violation vectors x and y

U(x, y) 5O x u(i, j)y , (5)i i
i, j

and

V(x, y) 5O x v(i, j)y , (6)i i
i, j

Here U(x, y) ±V(x, y). Therefore, the inspection model is a bimatrix game (Forgo et
al., 1999).

3 For example, killing prey.
4 Prey is killed and a poacher is caught.
5 The price of the killed prey.
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7. Direct Search Algorithm (DSA)

A simple way to obtain equilibrium in pure strategies is the Direct Search Algorithm
(DSA). The set IJ of equilibrium points in pure strategies is the intersection of two
sets I and J defined by the following conditions

IJ 5 I > J , (7)

I 5 < I( j) , J 5 < J(i) (8)j i

I( j), # arg max u(i, j) (9)
i

J(i), # arg max v(i, j) . (10)
j

Here I( j) is a set of maximal elements at each column of the matrix u(i, j). J(i) is a
set of maximal elements at each row of the matrix v(i, j). If equilibrium exists and
the intersection IJ is empty, one needs mixed strategies to obtain the equilibrium
(Owen, 1968).

8. Necessary and sufficient conditions
0 0For a pair (x , y ) to be an equilibrium point of the bimatrix game (A, B), it is

0 0necessary and sufficient (Forgo et al., 1999) that there exist real numbers a , b
0 0 0 0such that (x , y , a , b ) satisfies the system

xAx 2 a 5 0 ,

xBy 2 b 5 0 ,

Ay 2 aI < 0 , (11)

xB 2 bI < 0 ,

x > 0 , y > 0 , Ix 5 1 , Iy 5 1 .

Here I denotes the unit vector. The condition (11) represents the bilinear problem
because it involves products of different variables. The solution of bilinear problems
is difficult. Therefore, we consider some approximate algorithms to search for mixed
strategies of the equilibrium.

9. Irrelevant Fraud algorithm (IF)
0 0The idea is to define such mixed strategies y , x that makes the partner fraud

6irrelevant. The following expressions define these strategies

6 The fraud is irrelevant, if average winnings of the partner does not depend on his pure strategy
i 5 1, . . . , m, and vice versa.
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m
0O u(i, t)y 5 U , i 5 1, . . . , m , (12)j

j51

m
0O v(i, t)x 5V , j 5 1, . . . , m , (13)i

i51

m m
0 iO y 5 1 , O x 5 1 , (14)j 0

j51 i51

0 0x > 0 , y > 0 , i, j 5 1, . . . , m . (15)i j

Expressions (12), (13), (15) include inequalities. Therefore, the linear programming
(LP) is an appropriate method of solution. From (12), (13), (15) one obtains this LP
problem

max (u 2 u 1 v 2 v ) , (16)1 2 1 2x, y,u.v

mO u(i, j)y 5 u 2 u , i 5 1, . . . , m , (17)j 1 2
j51

mO v(i, j)x 5 v 2 v , j 5 1, . . . , m , (18)i 1 2
i51

m mO y 5 1 , O x 5 1 , (19)j i
j51 i51

x > 0, y > 0 , i, j 5 1, . . . , m , u > 0 , u > 0, v > 0 , v > 0 . (20)i j 1 2 1 2

Here x 5 (x , . . . , x ), y 5 ( y , . . . , y ), u 5 (u , u ), v 5 (v , v ), U 5 u 2 u and1 m 1 m 1 2 1 2 1 2

V5 v 2 v . The solution of linear programming problem (13), (12) not always1 2

exists. Then one searches for the equilibrium using the Direct Search algorithm (7).
That complements the fraud irrelevant algorithm (19), (20) and defines the
equilibrium in pure strategies, if it exists. An alternative is the strategy elimination
algorithm.

10. Quadratic Strategy Elimination Algorithm (QSE)

The strategy elimination algorithm includes both Irrelevant Fraud and Direct Search
algorithms. In addition it eliminates irrelevant raws and columns:

0 01. obtain a solution (x , y ) of linear equations (12), (13), (14), including
inequalities (15), if a solution of the system is found, go to step 7;

2. search for equilibrium in pure strategies by the Direct Search algorithm (7) if a
solution is found, go to step 7;
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0 03. obtain a solution (x , y ) of linear equations (12), (13) and (14), ignoring
inequalities (15);

4. reduce the system of linear equations by eliminating columns j 5 k and raws
i 5 k if at least one variable is not positive k: y < 0 or x < 0, set to zero thek k

variables x 5 y 5 0;k k
75. if a solution of the reduced system is found, go to step 7;

6. if the reduced system is not empty, go to step 3;
7. stop, and record the components x . 0, y . 0 as equilibrium strategies.i j

Often (QSE) obtains solutions of bilinear problems (11). The algorithm defines both
the pure and the mixed strategies. Therefore, QSE may replace both the Direct
Search algorithm (7) and the Irrelevant Fraud one (19), (20).

0 0Testing for equilibrium one has to test this QSE solution x , y against all
possible mixed strategies x and y. This is performed by solving the following
auxiliary LP problems

m
0max O x u(i, j)y (21)i jx

i51, j51

m
0max O x v(i, j)yi jy

i51, j51
(22)

m mO y 5 1 , O x 5 1 , x > 0 , y > 0 , i, j 5 1, . . . , m .j i i j
j51 i51

11. Preventing unauthorized deals

The game will not be played by rules if the players may win more by breaking them.
Unauthorized deals (for example, bribes) are usual tools breaking the rules of
non-zero-sum games where v(i, j) ± 2u(i, j). An example of such deal is sharing

¯ ¯the killed pray between the inspector and violator. Values of the optimal deal (u, v )
are defined by the Nash bargaining conditions (Owen, 1968).

¯The optimal deal (u, v) depends on the set of feasible deals D, and on max-min
values defining what the players will get if the deal fails

u* 5max min U(x, y)
x y

(23)
v* 5max min V(x, y) .

x y

Here, u* is the maximal expected guarantee win of the first player, v* is that of the
¯ ¯second player. In the deal the first player gets u, the second one obtains v. Under

¯ ¯some natural assumptions (Owen, 1968), the optimal deal (u, v ) 5 f(D, u*, v*) is

7 The reduced system is described by quadratic matrix, this explains the acronym QSE.
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uniquely defined by the following conditions. If there is a pair (u, v) [ D, such that
u . u*, v . v*, then the optimal deal

¯ ¯(u, v ) 5arg max (u 2 u*)(v 2 v*) , (24)
u,v

where

(u, v) [ D , u > u* , v > v* (25)

If the sum of expected wins of both players is restricted by c then

D 5 h(u, v) : u 1 v < cj , (26)

and the optimal deal

¯ ¯(u, v ) 5 ((c 1 u* 2 v*) /2, (c 1 v* 2 u*) /2) (27)

An obvious way to prevent unauthorized deals is by introducing penalties (w , w )1 2

that makes the deal unprofitable

¯ ¯(w , w ) > (u 2 u*, v 2 v*) (28)1 2

From (27)

w > c 2 u* 2 v*, i 5 1, 2 . (29)i

Assuming that the deal is arranged before the game

c 5max g q (30)i i
i

Here c is the maximal expected utility to be divided between the bargaining players.

12. Software example

Figure 2 shows the input window. Data is recorded by adding forests and by
entering their parameters P, Q, G. To prevent unauthorized deals one enters ‘Fine’
and ‘Fine’s probability’ defining the average penalties.

13. Future developments

In the inspector problem the QSE algorithm performed well, thus, no additional
randomization and parameters optimization was needed. Therefore, an interesting
future problem is to apply the QSE algorithm developed for the inspector problem to
other bimatrix games. Then the randomization and optimization of its parameters
could be helpful.

14. Distance studies

For the graduate level distance and class-room studies of the theory of games and
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Figure 2. The input window of inspector game.

markets in the Internet environment a set of examples of global and discrete
optimization was implemented using Java language. A family of web-sites was
developed:

http: / /optimum2.mii.lt / | jonas2
http: / / soften.ktu.lt / | mockus
http: / /mockus.org /optimum

The theoretical background and the complete description of the software is in the
file ‘stud2.ps’. Examples of discrete optimization, including the knapsack and the
school scheduling problems are in the web-side section ‘Discrete Optimization and
Linear and Dynamic Programming’.

All the results for international users are in English. Specific examples designed
for Lithuanian universities are in Lithuanian.
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